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Abstract 

The assumption of a discrete space-time is expressed mathematically by restricting the 
space-time variables to the field of integer numbers, and by restricting to the field of 
rational numbers the functions describing the laws of motion. This rational character must 
be preserved under the transformations connecting different systems of reference. The 
Cayley parametrization of semisimple Lie groups, and in particular of the Lorentz group, 
satisfies this condition if we require these parameters to take only integer values. The 
rational points of the most frequently used transcendental functions are obtained with 
the help of the integer complex and hypercomplex numbers. Some applications are made 
concerning the laws of motion in special relativity defined over a (3 + 1 )-dimensional 
cubic lattice. 

1. Introduction 

The idea of a discrete space-time has been introduced by physicists in the 
past in several different ways. 

Heisenberg (1938, 1943) advocated a fundamental length and inferred its 
connection with a discrete mass spectrum. 

Snyder (1947) has proposed a quantized space-time in the sense of coordinate 
operators with discrete spectrum, but the introduction of a finite minimal 
unit of length forces the non-commutativity of these operators. 

Flint & Williamson (1953) modified Snyder's position operator by using 
an elementary length in the direction of motion. 

t The ideas of this paper were presented to the Conference on Dynamical Groups, 
Boston University, May 1973. 
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According to Darling (1950) the space-time is continuous but the dynamical 
laws must be expressed by means of finite difference equations, a method which 
was also adopted by Hellend & Tanaka (1954). 

In a different approach, Castell (1966, 1967) assumed that the space-time 
structure at the microscopic level is determined by a fundamental length. Led 
by symmetry considerations, he postulated that this microscopic length is 
the scale constant of a 5-dimensional pseudohyperbolic geometry embedded 
in a 6-dimensional Euclidean space. 

In the construction of unitary irreducible representations of a new dynamical 
group, Aghassi, Roman & Santilti (t  970, 1971) found a fundamental length 
associated with the central extension of the covering group (which length 
gives at the same time one of the labels characterizing the irreducible repre- 
sentations) and proposed a covariant four position operator which belongs to 
the a~sociated Lie algebra. 

In the aforementioned papers the quantization of  space-time variables has 
been obtained, in general terms, by the introduction of difference operators 
or quantum generators. Recently Ahmavaara (1965, 1966) proposed a finite 
space-time cubic lattice, which is embedded in a finite linear space over a 
Galois field. Similarly, Bopp (t967) adopted the idea of a finite cubic lattice, 
with discrete space variables and continuous time, but this lattice structure 
is Lorentz invariant only when the number of points becomes infinite. Finally, 
Greenspan (1973) expressed the law of classical mechanics in difference 
equations with discrete space-time variables, and these equations are invariant 
under continuous groups of transformations. 

In this paper the assumption of a lattice structure for the points of space- 
time is adopted, which requires the use of difference equations. A stronger 
assumption requires the solutions of these difference equations to take only 
rational values. As a consequence of the conservation laws, this lattice structure 
and the rational character should be preserved under coordinate transformations 
without taking the limit to a continuous structure of the space-time. 

The strong character of these assumptions makes it very hazardous to accept 
them, because of the possibility of non-physical constraints; but at the same 
time it opens the way to new superselection rules to fit some discrete values 
of physical magnitudes. 

In this paper simple consequences and elementary methods that arise from 
these assumptions have been elaborated in a more intuitive than rigorous 
way, and a few simple examples in the area of classical relativistic mechanics 
and electrodynamics are given. Yet no applications to the problems of 
quantization will be made, which nevertheless seems to be the crucial test of 
the assumptions. 

In Sections 2 to 5 a classical treatment of the Cayley parametrization of 
the semisimple Lie groups is made with emphasis on the proper rotation and 
Lorentz groups. Using the multiplication law of the Cayley parameters of the 
Lorentz group, an associative non-division algebra of hypercomplex numbers 
is introduced. 

In Section 6, the assumptions adopted and the invariance principles con- 
nected with them are explained. 
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In Sections 7 and 8, a method is constructed for finding the rational points 
of the trigonometric and hyperbolic functions and other quadatic forms with 
the help of the hypercomplex numbers introduced earlier. 

In Section 9, the Cayley parametrization is applied to the calctilation of 
the rational matrix elements of the semisimple groups. 

In Section 10, simple examples of equations of motion in relativistic 
mechanics and electrodynamics are worked out with the help of the mathe- 
matical tools introduced in previous paragraphs. 

2. Cayley's Rational Parametrization of Semisimple Groups 

Let d be a semisimple Lie group of complex matrices A, which leaves 
invariant some non-degenerate bilinear form. 

We call a matrix A of the group J non-exceptional if det (E + A) 4: 0, 
where E is the unit matrix. Cayley (1846) has proved that every non-exceptional 
matrix A can be expressed as follows 

A = (E -t- S)-I  (E - S )  = (E - S)(E +S) -1 (2.1) 

where S is also a non-exceptional matrix. 
If G is the coefficient matrix of the non-degenerate bilinear form, which is 

left invariant under the group d ,  the non-exceptional matrices A satisfy the 
relation 

A +GA = G (2.2) 

and because of (2.1) the corresponding matrices S will also satisfy 

S+G + GS = 0 (2.3) 

In order to obtain the independent parameters of the semisimple group d 
it is more convenient to work with expression (2.3), which is linear, rather 
than with expression (2.2), which is quadratic. If we diagonalize or reduce to 
the canonical form the coefficient matrix G we have a further simplification 
of (2.3). Taking the independent elements of the matrix S given by (2.3) to 
be the independent parameters, we obtain Cayley's rational parametrization 
of the semisimple groul z d .  (Note that when the independent elements of S 
are complex their real and imaginary part should be taken as independent 
parameters.) 

In Table 1 we give the explicit conditions on the non-exceptional matrices 
A and S for all semisimpte Lie groups, as derived fi'om expression (2.2) and 
(2.3), respectively. The notation A T means the transpose matrix and A + the 
adjoint. Also 

{0 j nl 
J- 7 1  

in the group Sp(2n) and 

L ol 
\ o ! -E j 
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in the groups SO(p, q) and SU(p, q), where En, Ep, Eq are the unit matrix of 
order n, p, q respectively. The condition on the matrix S gives automatically 
the unimodularity condition 

det(E +A) = det(E - A )  (2.4) 

except in the groups SU(n + 1) and SU(p, q) and therefore (2.4) imposes an 
extra condition on the parameters corresponding to these groups. 

TABLE 1. Cayley's decomposition of semisimple groups 

Conditions Conditions 
Group on A on S Unimodularity Parameters 

SO(2n) ATA=E s T + s = 0  n(2n-1)  
SO(2n+I)ATA=E s T + s = 0  n(2n + 1) 
SU(n+I) A+A=E S + + S = 0  [ E + A [ = I E - A [  n(n + 2) 
Sp(2n) ATjA=J STJ+JS=O n(2n + 1) 
SO(p,q) ATIA=I sTI+IS=O 1/2(p+q)(p+q-1) 
SU(p,q) A+IA=I S+I+IS=O [ E + A I = I E - A I  (p+q)2-1 

When the matrix A is unimodular but exceptional, i.e. when det (E + A) = 0, 
then Cayley's decomposition (2.1) is not possible, but in this case Weyl (1946) 
has proved that any exceptional unimodular matrix A can be transformed into 
the form 

__ o l  

where E2p is a unit matrix of even dimension and B is a non-exceptional 
matrix. Moreover the matrix A can be expressed as the product of two com- 
muting non-exceptional matrices. 

Some useful expressions derived from (2.1) are 

E - S 2E 
A - - E  (2.5) 

E+S E+S 

where the symbol of division has been used, because the matrices of the 
numerator and of the denominator commute. For any non-singular matrix B 
we have 

E - BSB -1 
BAB -1 = 

E + BSB -1 

Also from the product of two non-exceptional matrices A 1A 2 = A one 
obtains 

E + S  = (E + S2)(E +S1S2)-I(E +S1) (2.6) 



CAYLEY PARAMETRIZATION OF SEMISIMPLE LIE GROUPS 217 

which yields the multiplication law for the parameters of the group, i.e., the 
Cayley parameters of the matrix A in terms of the parameters of the matrix 
A 1 and A 2. In particular, if 

if 

[A a,A2] =0, then S = S1 +$2 
E +SIS 2 

[$1,$2] =S12 =$22 = 0, then S =$1 +S 2 

3. S o m e  Examples  

3.1. The Ro ta t ion  Group, SO(3) 

From Table I the matrix S is antisymmetric and it can be expressed in the 
following way 

S = - -  0 q 
m - q  0 

(3.1.1) 

where n, p, q are independent parameters and m has been introduced for 
convenience. Using (2.5) and (3.1.1) one obtains the Cayley parametrization 
of the non-exceptional matrix of the rotation group 

! 

A -m2 +n 2 +p2 +q2 

m _ n 2 _ p2 + q2 

x | 2 m n  + 2pq 

- 2mp  + 2nq 

- 2 m n  + 2pq 
m 2 _n 2+p2-_q2 

2mq + 2np 

\ 
2mp  + 2nq 

- -2mq + 2rip 
m 2 + n 2 _ p2 _ q 

(3.1.2) 

If we define o~ = m + in, {3 = p - iq and then impose m 2 + n 2 + p2 + q2 = 1, 
the parametrization of the matrix A given by (3.1.2) is identical with the 
parametrization used by Wigner (1959a) for the 3-dimensional rotation group. 
The parameters c~ and {3 used by him are related to the parametrization of 
SU(2), the cove~ring group Of SO(3), in this way 

( o~ 13 ) ,  1o~12+[/3]2= I (3.1.3) 
A =  --{3" ~* 

The one-to-two correspondence between SO(3) and SU(2) groups is obvious: 
two different dements A and - A  of the group SU(2) defined by (m, n, p, q) 
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and ( - m ,  - n ,  - p ,  - q )  correspond to only one element of the rotation 
group. 

The exceptional proper matrices of the rotation group are 

(1111 ( 11)t -111) 
and all the matrices obtained from these by a similarity transformation with 
any of the non-exceptional proper matrices (3.1.2). 

In terms of  the components of  the axis of  rotation (a 1, a2, a3) and of the 
angle of rotation (b, the Cayley parameters have the following geometrical 
interpretation 

q _ p _ n  

a 1 a2 a3 ' 

m 2__n 2 _ p 2 _ q 2  
cos(b= m 2 + n  2 + p 2 + q 2  (3.1.4) 

When (b = rr, then from (3.1.4) we obtain either m = 0, or some of the para- 
meters n, p, q go to infinity. Since the exceptional matrices correspond also to 
4~ = rr, it follows that in the case of non-exceptional matrice (3.1.2) the para- 
meters n, p, q must be finite and m 4= 0. 

Similar parametrization and corresponding properties can be obtained for 
the N-dimensional rotation groups. 

3.2. The Unitary Group SU(2) 

From Table I the matrix S is antihermitian and it can be expressed as 

S = ~ _ p ,  ib 0.2 .1)  

where a and b are real parameters, p = r + is and l has been added for 
convenience. 

From (2.5) and (3.2.1) one obtains 

1 [l 2 + a b - ] p l  2 + i 2 l b  
A = -~ ~ 2lp* 

with A =I  2 - ab + I p [~ + il2 (a + b ). 
The antihermiticity of S gives 

- 21p ) 
l 2 + ab - I P t 2 + i2la 

det (E + S)* = det (E - S) 

but it does not imply the unimodularity condition. (In the rotation group 

(3.2.2) 
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the antisymmetry of S does imply the unimodulafity of A.) If we impose 
detA = 1, from (2.1) follows that 

det (E + S) = det (E - S) 

Both conditions, unitarity and unimodulafity of A, give det (E + S) = real, or 

a + b = Tr S = 0 (3.2.3) 

Substituting (3.2.3) in (3.2.2) we obtain the general expression for the 
unitary unimodular matrices in two dimensions 

l (12 -- a2 - r2 - s2 - i21a - 21r - i2ls ) ( 3 . 2 . 4 )  
A = ~ 21r - i2[s l 2 - a 2 - r 2 - s 2 + i2la 

with A = 12 + a 2 + r 2 + s 2. Obviously the matrix (3.2.4) is equivalent to (3.1.3), 
but uses different parametrization. 

3.3. The Unitary Group SU(3) 

From Table 1 the matrix S is the general 3-dimensional hermitian matrix 

1 _ p ,  ib (3.3.1) 
S = T O* --r* ic 

where a, b, e are real parameters, P, o,r  are complex and I is introduced for 
the sake of homogeneity. As in the case of the SU(2) group, and in contrast 
with the orthogonal group, the unimodularity condition is not implied by 
(3.3.1). If  we impose the last condition together with the unitarity of A, we 
have 

det (E + S) = real or i(a + b + c) + l det S = 0 (3.3.2) 

which restricts to eight the number of  independent parameters. Observe that 
in this case the matrix S is not traceless, contrary to the case of the orthogonal 
and SU(2) groups. We will come back later to this unwanted result, because 
it is desirable to have the matrices S with the same properties of the corresponding 
infinitesimal generators. 

3.4. The Proper Loren t z  Group SO (3.1) 

From Table t one obtains the traceless matrix 

s=  ! n o q 

m ( P r - q s  Ot 
(3.4.1) 
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where n,  p,  q, r, s, t are real independent parameters and m has been introduced 
as before. The unimodulari ty of A does not impose further conditions on these 
parameters. From (2.5) one gets 

l l m  _ n 2 _ p2 + q 2  + r 2 _ s2 _ t 2 + ~2  
2ran + 2pq  + 2rs - 2X t  

A = - 2 r a p  + 2nq  + 2r t  + 2Xs 

- 2 m r  - 2ns + 2 p t  - 2XCl 

- 2 m n  + 2 p q  + 2rs + 2Xt 
m 2 _ n 2 +p2 _ q 2  _ r 2 +s  2 _ t 2 +)k2 

2 m q  + 2np  + 2s t  - 2Xr 

- 2 m s  + 2nr  -- 2 q t  - 22,p 

2rap + 2nq  + 2r t  - 2~s 

- 2 r n q  + 2 n p  + 2s t  + 2Xr 
m 2 + 172 _ p 2  _ r 2 _ s 2 + t2 + ~2 

- 2 m t  - 2pr  + 2qs  - 2Xn 

- 2 m r  + 2ns - 2 p t  - 2Xq 

2 m s  - 2nr  + 2 q t  - 2Xp 

- 2 r o t  + 2pr  - 2qs - 2Xn 
m 2  + n 2  + p 2  + q 2  + r  2 + s  2 + t 2 + ~k2 

(3.4.2) 

where rnk = n t  + ps  + qr  

A = m  2 + n  2 +p2 +q2 _ r  2 _ s2 __ t2 _ •2 

If A > 0, since detA = 1, one obtains the general expression for the non- 
exceptional matrices of the proper Lorentz group (/144 > 0). 

I f r  = s = t = 0, one recovers expression (3.1.2) for the proper orthogonal 
group in 3-dimensions. 

If  n = p  = q  = 0 one is left with the non-exceptional matrices of the pure 
Lorentz transformations. In this case, comparison of (3.4.2) with a pure 
Lorentz transformation with velocity v along v gives (Meller, 1952) 

V x _ V y _ V  z 2 m e  (1 v 2 1 1 / Z = m 2 - r 2 - s 2 - t 2  

r s t m 2 + r z + s z + t 2 ' - -~]  m 2 + r 2 + s 2 + t z 

(3.4.3) 

where c is the velocity of light in vacuum. 
If m = 0 or r, s, t goes to infinity, we have from (3.4.2) the following 

matrices 

( )(1 t (  ) 1 1  1t lj i 
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which are exceptional and also do not belong to the proper Lorentz group 
(A 44 ~ 0).  Therefore for the non-exceptional matrices of the proper Lorentz 
group the parameters r, s, t must be finite (n, p, q must also be finite as we 
have seen before) and m 4= 0. 

We still can have exceptional matrices of the proper Lorentz group such as 

{i °°  I1-1°°  141 ° °  -1  0 ~ 0 a22 0 a -1  0 

0 a33 a34 ' 0 0 - 1  ' 0 - 1  

0 a43 a44 ] 0 a42 0 a44 ) \a41 0 0 a44 ] 

with aii = a44 and  ai4  = a4i , a2i a 2 i4 = 1 (i = 1,2, 3) and all the matrices 
obtained by these by a similarity transformation with the help of (3.4.2). 

If we define 

{~ = m - t + i(n - X), 

7 = p - r + i ( q  +s), 

[3 = - p  - r + i(q - s) t (3.4.4) 
8 = m  + t - i ( n  +X) J 

and introduce these variables in the general expression of the proper Lorentz 
group in terms of the parameters of the SL (2, C) group (Naimark, 1964a) 

we obtain the expression (3.4.2) plus the condition 

m X =  nt + ps + qr 

A = m 2  +n2 +p2 +q 2 - r 2 - s 2 - t 2 - ) k 2 = 1  ) (3.4.5) 

As in the case of the rotation group, the one to two correspondence between 
the proper Lorentz group and its covering group, SL (2,C) can be easily seen 
with this parametrization; two different elements,A a n d - A  of the group 
SL(2,  C) defined by the sets (m, n, p, q, r, s, t) and ( - m ,  - n ,  - p ,  - q ,  - r ,  
- s ,  - t )  correspond to one and the same matrix of the proper Lorentz group. 

4. Hypereomplex Numbers Associated With Cayley Parameters o f  the 
Lorentz Group 

The general composition law of the Cayley parameters can be found from 
(2.6). However, in the case of the proper Lorentz group, it takes a particular 
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simple form due to the homomorphism between this group and S L  (2, C). In 
fact, substituting (3.4.4) in the multiplication law of SL  (2, C), namely, 

and comparing the matrix elements on both sides, we easily obtain 

F mtt-  

rt tl 

q"  

S et 

[" 

m 

n 

P 

= q 

F 

S 

t 

X 

- n  - p  - q  r s t - X -  

m q - p  s - r  X t 

- q  m n - t  X r s 

p - n  rn X t - s  r 

s - t  - &  m - n  p - q  

- r  - X  t n m - q  - p  

--X r - s  - p  q m - n  

t s r q p n m 

r m ,  

in 
Ip' 

t q 
t 

r 
! 

s 

t I 

(4.1) 

with the parameters satisfying (3.4.5). The square matrix U of expression (4.1) 
is itself a non-unitary 8-dimensional representation of the proper Lorentz 
group. In order to ascertain whether this representation is irreducible we 
calculate the infinitesimal generators Juv that satisfy the standard commuta- 
tion relations, and substitute them into the Casimir operator. We find 

t J k •  ir~ub' - 12 - -  - -  2~ ~ - ° o  + l ]  1 (4.2) 

where (lo, I1)are the characteristic labels of some irreducible representation. 
Here, the only possible solutions for (lo, l l)  are (½, ~) and (½, -~ ) ,  which 
correspond to the 2-dimensional irreducible spinor representations. Hence, 
our matrix U is a reducible representation of the proper Lorentz group. 

With the help of the matrix Uwe can also construct a system of hyper- 
complex numbers in the following way: Let us expand the matrix U as a linear 
combination of 8 numerical matrices, each multiplied by one of the 8 para- 
meters (we also relax the conditions (3.4.5) on these parameters): 

U = m u  0 + n u  1 + PU2 + q u 3  + h i 4  + SUs + tu6  + ) v z 7  (4.3) 

The matrix multiplication of any two matrices uA (A = 0, 1 . . . .  7) is given in 
Table 2. (As usual, one matrix in the left side multiplied by one matrix in the 
upper side gives the matrix in the intersection.) 

Choosing the UA as basis elements and the multiplication law their matrix 
multiplication, we can construct an associative algebra over the field of real num- 
bers; in other words, we have a field of hypercomplex numbers, defined by (4.3), 
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TABLE 2. Multiplication table of the basis elements u A 

1 u,  U2 U3 /24 U5 U6 U7 

223 

1 1 
U 1 U 1 
U2 /22 

lA 3 U3 

/24 /g 4 
/25 U5 
l'/6 /26 

U7 /27 

Ul U2 U3 U4 /25 /26 /27 
--1 --U 3 U 2 U 5 --U 4 U 7 --U6 
/23 --1 --/21 --U6 /27 /24 --/25 

--U 2 U 1 -1  U7 /26 --H5 --/24 
--U 5 U 6 U 7 1 - - g l  U2 U3 

/24 U7 - - U  6 U 1 1 --U 3 UZ 

U7 --/24 US --/22 U3 13 Ul  

--U6 --H5 --H4 /23 /22 H 1 - I  

with real components (rn, n, p, q, r, s, t, X) and generators UA (.4 = 0 , . . .  7) 
satisfying the multiplication taw given by Table 2. This algebra is not a division 
algebra, because it has divisors of zero. A 2-dimensional representation of this 
algebra can be obtained with the help of (3.4.4) 

+r(; :)+'(: i) 
Identifying (4.4) and (4.3) it can be checked that these 2-dimensional 

matrices satisfy the multiplication law of Table 2. 

,(4.4) 

5. Cayley Parameters and Generalized Euter Angles 

According to the geometrical interpretation of the Cayley parameters of 
the rotation group given by (3.1.4), if we take p = q = 0 in (3.1.2), the matrix 

\[m2-n2 ~ 2) (5.1) 
A = m2 + n-- ~ 2 n m 2 - n 2 

o 0 mZ+n 

represents a rotation around the x3-axis. If we compare this matrix with the 
matrix that gives the same rotation in terms of the angle of rotation q~ we 
obtain the relation between the two kinds of parameters 

m 2 - -  n 2 2rnn 
COS ~b = m2 + n2 sin q~ = m2 + n2 (5.2) 

with-Tr < 4)< rr andm=/=O,-~<m,n < oo. 
In the same way the Euler decomposition of the general element of the 

rotation group can be achieved in terms of the Cayley parameters 
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2 2 o \[m~+n~ o o \ m I --171 - - 2 m  1/7 t 

l 1 2 m  nl l ~  rn2 -n2  A : A  ; m ] - n  2 0 0 2 2 _2rnz/7 
0 m~+n] 0 2mznz m ~ + n ~ !  

irn 2 - n~ -2m3n 3 
x t 2m03n 3 rn:~-n 2 ~ ] (5.3) 

o 

where A = (m21 + n])(m 2 + n~)(m~ + n~). 

Symbolically, if we represent the general matrix of the rotation group 
(3.1.2) byA(m,/7, p, q), the Euler decomposition can be written 

A(m,n ,p ,q )=A(ml , /71 ,0 ,  O)A(m>O,O, n2)A(m3,n>O,O) (5.4) 

The relation between the Cayley parameters in the Euler decomposition 
(5.3) and the parameters of the general rotation (3.1.2) is easily found with 
the help of the multiplication law (4.1), namely, 

m =mlm2m a - n l m 2 n 3 ,  n =nlm2m 3 +mlrnzn 3 I (5.5) 

P =/7 l n 2 m 3  --  m l r / 2 r t 3 ,  q = m l n 2 m 3  +/71/72/73 J 
In the general case of the n-dimensional proper orthogonaI group it is 

possible to factorize the general matrix in terms of the generalized Euter 
angles by standard methods (Murnaghan, 1962). For each particular matrix 
in the decomposition a correspondence similar to that in (5.1) and (5.2) can 
be obtained between the Cayley parameters and Euler angles. 

According to the geometrical interpretation of the pure Lorentz trans- 
formations given by (3.4.3), if we take in (3.4.2) n = p = q = s = t = 0, the 
matrix 

lm2 i r2 0 0 -2mr ) 
_ t m 2 - r 2 0 0 ( 5 . 6 )  

A m 2 - r 2 0 m 2 - r 2 0 

t -  2mr 0 0 m 2 + r 2 

with m 2 - r 2 > 0, represents a pure Lorentz transformation along the x 2- 
axis. If the same transformation is written in terms of the hyperbolic functions, 
we conclude that 

m 2 + r 2 2mr 
- - -  s h  0 m z _ r ~ ( 5 . 7 )  ch0 rn ~ _ r2 , - - 

w i t h - ~ , <  0 < ~ ,  and 0 ~< I r [ <  [ m [ < ~ .  

The general matrix of the proper Lorentz group can be factorized in the 
form of proper rotations and pure Lorentz transformations (Naimark, 1964b). 
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More explicitly, i fA(m, n, p, q) represents a proper rotation and B ( m ,  r, s, t) 
a pure Lorentz transformation, the general matrix of the proper Lorentz group 
can be expressed as follows 

A ( m ,  n , p ,  q, r, s, t, X) = A(m 1, hi ,  Pl,  q l ) B ( m 2 ,  r2, O, O)A (m3, ha, P3 , q3) 

The relation between these parameters can easily be obtained with the help 
of the multiplication law (4.1), namely 

rn = r n l m 2 m  3 - n l m 2 n 3  - p l r 2 P 3  - q l r2q3 ,  

n = n l m 2 m  3 + m l m 2 n  3 + q l r 2 p 3 - p l r 2 q 3 ,  

P =Plr2m3 - q l r z n 3  + m l r n 2 p 3  + n l m 2 q 3 ,  

q =q l r2rna  + p l r 2 n 3  - n l m 2 P a  +rn lm2qa ,  

r = m l r z m 3  + n l r 2 n 3  + p l r 2 p 3  - q l r 2 q 3 ,  (5.8) 

s = n lr2rn3 - m l r 2 n 3  - q lr2P3 - P lreq3 

t = - p l r 2 m 3  - q l r 2 n 3  + m l r 2 P 3  - n l r 2 q  3 

X =q l r2rn  3 - p l r 2 n  3 + n l r 2 p  3 +rn l r2q  3 

In order to factorize the SU(2) group, in terms of Cayley parameters, we take 
expression (3.2.4) and make alternatively 2 parameters equal to zero. We obtain 

_ 1 [ l  2 - a 2 - i21a 0 

A l 2 +a 2 ~ 0 l 2 a 2 + i2laJ ' r = s = 0 (5.9) 

_ I ( 1 2 - - r 2  --21r ) 

A l 2 + r 2 \ 21r l 2 . . _  r 2 , 

1 { 1 2 - - s  2 - - i 2 l s ~  

A - 1 2  +r2 \ - i21s  l 2 - s  2 ] '  

a = s = 0 ( 5 . 1 0 )  

a = r  = 0 (5.1 1) 

From the homomorphism between the SO(3) and SU(2) groups and its 
parametrization (3.1.2) and (3.1.3), we deduce that (5.9) corresponds to a 
3-dimensional orthogonal matrix with 

m _ l 2 -- a 2 ~ n 21a 

x/(m 2 + n2) t2 + a2 = cos 7 '  N/(m 2 + rt2) /2 + a2 = sin (5 .9 ' )  

where ~ is the angle of rotation around the x a-axis. (5.10) corresponds to a 
matrix of rotation with 

m 12 _ r 2 0 p 2lr 0 
- = = s i n -  ,v/(mZ+p 2) 12+ra=C°S2  - '  x / ( m e + p  2) 12+r2 2 

(5.~o') 
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where 0 is the angle of rotation around the x2-axis. (5.11) corresponds to a 
matrix of rotation with 

m l 2 - s 2 ~J q 2ts 
x/(m2 + q2) - - ~ 5 2  = cos ~- , x/(rn2+q2)-12+s-----~=sin (5.11') 

where VJ is the angle of rotation around the xa-axis. 

In analogy with the Euler factorization of the SU(2) group OVigner, 1959b), 
we obtain 

= 1  (l 2 - a  2 - i 2 l l a  1 0 ]{12--a2 --22/2a22 ] 
A A 0 12-a21 + i 2 l l a l ] \  212a2 1 2 - a 2 ]  

2 _  2_i213a3 0 ) ls 
a30 l~ - aZ3 + i213a 3 

x 

with 
A = (l 2 + a2)(l 2 + a2)(l 2 + a 2) (5.12) 

Symbolically, 

A ( l , a , r , s ) = A ( l l , a l , 0 ,  O)Aq2,0,  az, O)Aq3,a3, O,O ) (5.13) 

where the parameters satisfy 

l=l l1213-at12a3,  a=all213 +lt12a3 ] 
(5.14) 

J r=ala213 - I l a 2 a s ,  q =lla213 +ala2a3 

In the case of the SU(3) parametrization each parameter in the off-diagonal 
of (3.3.1) gives rise to different traceless matrices S, 

(o i) : i) S = -il 1 1 0 , " 0 , 
0 12 0 

etc. (5.15) 

and the corresponding matrices A, given by (2.5) are 

°°) 1 i l l  - rl -2 l l r i  
= _ _  2 + 1"21 2 A 2lit  I 1 1  - -  r 1 

0 

2 2 r 2  ) / l 2 -- --i212r 2 0 1 
A = l ~  +r----~2 ~- i2 ;  2r2 l~-0 r~ 0 , etc. (5.~6) 
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In these cases, we have 

det S = Tr S = 0 

and from (3.3.2) the unimodularity of A is automatically fulfilled. 
When we take one parameter in the diagonal of S, say a ¢- 0, and b = c = 0, 

the unimodularity condition (3.3.2) requires a = 0. In order to obtain non- 
zero but traceless matrices S, we choose the one-parameter matrices as follows 

s : ? -  - a  , s :  7 b , 
0 0 - 

0 (5.17) 
l 0 

and from (2.5) 

A 12+a2 0 ( l - i a )  2 
0 0 I z + a 2 

etc. (5.18) 

The general matrix of the group SU(3) is factorized with the help of (5.16) 
and (5.18) following the standard method (Murnaghan, 1962). 

It can be seen that the first two matrices S given by (5.15) and the first of 
(5.17), after dividing by the corresponding parameters, are identical to the 
canonical generators of  the SU(3) group 

E~ + E - s ,  E~ - E _ s ,  Ha 

where a is the root ( 1 , - 1 , 0 ) .  This result, common to all semisimple groups, 
is not surprising, because the matrices S of the Cayley parametrization and the 
infinitesimal generators of the semisimple groups satisfy the same linear 
conditions given in Table 1, and therefore both satisfy the same commutation 
relations. 

6. The Hypothesis  o f  a (3 + 1)-Dimensional Cubic Latt ice 

The transformations we have described so far are acting on a linear vector 
space defined over the field of real or complex numbers. We want to restrict 
the field of this vector space to the field of rational and integer numbers. This 
means that the components of the vectors are no longer continuous variables. 
Instead, the components will only be discrete variables and the functions 
connecting these variables will take rational values. 

In particular, this hypothesis applied to the 4-dimensional Minkowski space 
is expressed by the following assumptions: 
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The space-time variables can take only integer values. This is under- 
stood on the basis of a 3-dimensional spacial cubic lattice supplemented 
with a 1-dimensional temporal chain, in which the events can only be 
assigned to one of the points of this (3 + 1)-dimensional cubic lattice. 

(2) Any magnitude derived from the space-time variables should also be 
integer or at least rational, and the laws of physics connecting these 
magnitudes should be described by functions of rational character, 
in the following sense: the dependent as well as independent variables 
should take only integer or rational values. Strictly speaking this 
assumption does not follow from the first, although it is consistent 
with it. 

(3) Since the 'edge' of the basic space-time cubic lattice is assumed to be 
very small, the laws of physics will 'appear' as continuous for big 
values of these variables. The functions describing th'e laws of physics 
will be the same, but in the case of discrete space-time variables, only 
the rational points of these functions will be taken as possible values, 
while in the continuous case the irrational points are also accepted. This 
correspondence law does not mean that we have to take the limit in 
going from the discrete case to the continuous case. Instead we start 
from the continuous space-time, which is the domain for the classic 
and quantum physics, and assume that the equation of motion are 
still valid in the discrete space-time, but restricted only to the integer 
or rational values of their variables. 

According to special relativity all inertial systems must be equivalent. 
Therefore, the assumptions above stated must be valid for any arbitrary 
inertial system. It follows that the rational character of the laws of motion 
in a particular system must be preserved under a proper Lorentz trans- 
formation, and that the space-time variables should be integer in any arbitrary 
inertial system. Thesd two conservation laws will impose very strong conditions 
in the transformations connecting different inertial systems. 

In the following, we will study how to obtain the rational points of the 
simplest and most often used transcendental functions, and the particular 
linear transformations which preserve this rationality condition. Then we will 
try to apply these results to some simple equation of motion in relativistic 
physics. 

7. Rationalization o f  Elementary Transcendental Functions 

7.1. The Trigonometric Functions 

The solutions of the diophantine equation x 2 +y2 = r 2 are given by 
(Sierpifiski, 1964a) 

x = ( m  2 - -  nZ)d, y = 2mnd, r = ( m  2 + n2)d (7.1.1) 

where m, n < m and d are integer numbers, provided the solutions for x, y 
are interchanged and added to them. Ifz  = m + in is a complex number with 
integer components (7.1.1) can be written 
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x = d R e z  2, y = d I m z  2, r = d l z [  2 (7.1.1') 

From the definit ion of  the trigonometric functions cos a = x/r, sin a = y/r,  
and from the completeness o f  the solutions (7.1.1) it follows that  the rational 
values of  these functions are exhausted by  

rn 2 - n 2 Re z 2 2mn Im Z 2 

cos a = - -  = 12, " = - -  = 12 (7.1.2) m 2 + n  2 ]z s l n a  m 2 + n  2 [z 

and by  the same expressions for cos a and sin a interchanged. 
Obviously 

eiC~ _ (m + in) 2 _ z 2 
rn 2 + n  2 Iz 12 (7.1.3) 

and for integer value of  K 

hence 

Z 2~ 
e iK~ = ~ = cos ~a + i sin ~a (7.1.4) 

cosK --?t +lV?, j, sinK -- /Uzj2 -jzl2  (7.1.S) 
These rationalized functions are non-continuous but  they satisfy the 

functional equations 

c°s(Kl  + t~z )a=c°s~: lac°sK2a- - s inKlas inK2°~  } 

sin (Kl +K2)ot=sinKlotCOSK2a+sinK2acost~la (7.1.6) 

cos 2 Ks + sin 2 t~a = 1 

The argument a in (7.1.2) and (7.1.5) still remains irrational since it 
represents twice the area of  the circular sector whose angle is a in a circle of  
unit radius. In order to rationalize it we adopt  the convention that  a is equal 
to twice the area bounded by  two radii and the joining chord divided by  the 
square of  the radius. To be more explicit,  suppose we construct a set of  points 
P~, whose components  are the real and imaginary part  of  

ZK=Z2K[Z[ 2(p-K), K = 0 , 1 , 2  . . . . .  p 

where z = m + in, m, n, p, K positive integers. The distance of  all these points 
2p to the origin is always I z [ • We define the angle between the radii of  two 

consecutive points PK and P~+ 1 as twice the area of  the triangle OP~PK+ 1 
divided by  the square of  the radius OPK. Obviously this angle is the same for 
arbitrary P~, although it depends on the vector z = m + in. So the argument 
of  the tr igonometric functions as defined becomes a rational number,  namely 

2ran 
a = m2 + nZ = sen a (m, n integers) (7.1.7) 
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7.2. The Hyperbol ic  Func t ions  

The solutions of  the diophantine equation X 2 __y2 = r 2 are given by  

X = (in 2 + n2)d,  y = 2mnd ,  r = (m 2 - n2)d  (7.2.1) 

where m,  ] n I < t m t, and d are integers. In order to give a geometric inter- 
pretation to this solution we take from (4.3) the particular hypercomplex 
number 

and define 

u = m  + n u  4 (u 2 = I )  

u* = m - nu4 ~ (7.2.2) 
[u 12 = uu* = m 2 + n 2 ) 

hence (7.2.1) can be written 

/,/2 + U$2 ll2 _ U$2 
x = 2 Y = 2 u4, r l u 12 (7.2.3) 

The hyperbolic functions can be defined over the hyperbola x 2 - y2 = r 2 
as ch/3 = x / r ,  sh 13 = y / r ,  where/3/2 is the area bounded by the x-axis, the 
radius vector of  the point (x, y )  and the hyperbola divided by r 2. Then, from 
(7.2.1) the rational values of  the hyperbolic functions are 

?n 2 + n 2 2ran 
c h ~ = m 2 n  2 , shtS=~n2 n2,  i n l < [ m l  (7.2.4) 

hence 

e ~ = c h f l + s h / 3 =  m + n  m - n  - - '  I ~ l <  lrnl 1 

e '-~ = cht3 - sh/3 = m - n 
m + n  

(7.2.5) 

gives also the rational values of  the exponential function. 
For an argument ~:13, K integer, (7.2.5) becomes 

_ _ ( m + n ]  ~ 
ch~:t3 + sh Kt3 = e~¢ \ m  - ~ -  n]  lnl<lml 

\ m + n ]  1 
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and from these expressions it is easy to prove 
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1( chK/3 =  +lul2 j, 
I{U 2~ U'2¢~ 

1.12 -V.Tj.. (7.2.6) 

where u = m + n u  4 (U 2 = 1), and m, n, K are integers. 
The rationalized function (7.2.6) satisfy 

ch(Kl + K2)~ =ch KI~ ch K2/3 + sh ~1¢~ sh K~/3 

sh (K 1 + K~)/3 = sh Ka~ ch K2~ + sh K2~ ch K1/3 

sh ~ Kg + c h 2 ~  = 1 
g2K 

ch t~/3 + u4 sh K/3 = ~ -~e u ~  (7.2.7) 

the last definition in analogy with (7.1.4). 
I f  we take the set of  points P~ (x, y )  whose components  are the components  

of  the hyper-complex numbers 

U~ = u2~tu l 2(p-  ~) (t~ = O, 1, 2, p )  (7.2.8) 

the points PK lie in the hyperbola x 2 - y2 = r 2, r = I u [2P, and for each point 
ch ~/3 = x / v ,  sh K/3 = y / r  satisfy the expressions (7.2.6). We define the rational- 
ized argument for the hyperbolic functions/3 as twice the area of  the triangle 
OPKP~+ 1 divided by  (OPt )  z where P~ and PK+ 1 are two consecutive points, 
therefore 

2rnn 
/ 3 - m 2  n2=Sh/3 I n l < l r n l  ('7.2.9) 

This argument does not depend on the particular point P~, although it 
depends on the number u = m + nu4. 

The rationalized trigonometric functions (7.1.5) and the rationalized hyper- 
bolic function (7.2.6) satisfy the difference equations 

A 2 cos ~:a + 2(1 - cos a)  cos (K + 1)~ = 0 "~ 

A 2 sin Ka + 2(1 -- cos a)  sin (K + 1)a = 0 ) A 2 ch K/3 + 2(1 - ch/3) ch (• + 1)/3 = 0 

A 2 sh K/3 + 2(1 - ch/3) sh (K + 1)13 = 0 

(7.2.10) 

where the difference operator is defined as usual 

Af(K ) = f (g  + 1) -- f(t¢) 

and a and/3 satisfy (7.1.7) and (7.2.9) respectively. 
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From (7.1.4) and (7.2.9) and (7.2.10) we also obtain 

A2 Z 2~: ( Z - - Z * )  2. g :(~+1) 

Izt :~ Izt 2 Izl 2(~+I) 
- - = 0  

A2 u z~ ( u - u * )  2 u 2('+') 

lu 12~ lu l: lu 12(x+l) =0 

7.3. Generalized Trigonometric Functions 

Let C be a hypercircle of unit radius in a 4-dimensional space, defined by 
the intersection of the hypersphere 

x 2 +y2 +z 2 + t  2 = 1 (7.3.1) 

with one hyperplane containing the vector (0, 0, 0, 1). We can define generalized 
trigonometric functions on this circle by 

sin 1 ot = X, sin2 a = y,  sin 3 a = z, cos a = t (7.3.2) 

where a is twice the area of the sector bounded by the t-axis and the radius 
of the point (x, y ,  z, t). 

These functions can be rationalized with the help of the hypercomptex 
numbers 

~ = m + n u l + p u 2 + q u 3  } 

co* = m - nu 1 - p u  2 - qu3 (7.3.3) 

t ~ 12 = ~ *  

where Ul, u2 and u3 satisfy the multiplication law of Table 2. In a similar way 
as used for the trigonometric functions we have 

l [ c o  2~ co*2K / 

sin1K°t = 2 / [ - - ~ - ~  u 1 -- u 1 [ 6o [2K ) 

sin2K~= ~ I i - - ~ u 2 - u 2  16o [2~ j (7.3.4) 

where m, n, p, q, K can take only integer values. These functions depend on 
the particular hypercomplex number co, and they satisfy the functional 
equations, for ~, l integers, 
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COS (K + l)a = COS Ka COS la - sinx ~ a  sin I la - sin2 Ka 

sin s la - sin3 Ka sin 3 la 

sin1 (n + l)a = cos Ka sin I la + sin I Ka cos la 

sins (K + l)a = cos Ka sin 2 la + sin2 Ka cos la 

sin3 (K + / ) a  = cos Ka sin3 la + sin3 Ka cos la 

cos 2 Ka + min T Ka + sin~ ~a  + sin~ Ka = t (7.3.5)  

Not ice  tha t  the basis e lements  wi th  negative sign ( - u  1, - u  2, - u  3) satisfy 
the same algebra o f  the  basis e lements  i, j ,  K for  the quaternions .  With  this 
subs t i tu t ion  (7.3.4)  can be expressed also in the field of  quaternions .  In 
par t icular ,  for  K = 1, it  ho lds  

m 2 _ n  2 _ p 2  _ q 2  2mn 
c ° s a =  m 2 + n 2 + p 2 + q 2  , s i n l a - m 2 + n 2 + p 2 + q 2  

2mp 2mq 
s in  3 o~ = q2 s i n s a = m 2  +nS  + p 2  + q 2 ,  m 2 + n  2 + p 2  + (7.3.6)  

The funct ions  (7 .3 .4)  also satisfy the fol lowing difference equat ions :  

`52 cos n a  + 2(1 - cos a )  cos (K + 1 )a  = 0 

A 2 sin 1Ka + 2(1 - cos a )  sin I (K + 1 )a  = 0 

,5 2 sin2 t~a + 2(1 - cos a )  sins(t~ + 1 )a  = 0 

A 2 sin 3 •a + 2(1 -- cos a )  sin3(K + 1)a  = 0 (7.3.7) 

Since cos Ka + u l  sin1 Ka + u 2 sin2 Ka + u 3 sin 3 Ka = 602K/1 CO 12~ we have f rom 
(7.3.7)  

A2 CO 2t~ (CO --  ¢D*) 2 (a9 2(g+1) 

[w  [ 2K leo 12 [ w  [ 2(K+ 1) = 0 (7.3.7 ' )  

7.4. Generalized Hyperbolic Functions 

Let  S be an hype rbo l a  def ined  b y  the in te rsec t ion  o f  the h y p e r b o l o i d  

t 2 _ x  2 _ y 2 _  z 2 = 1 

and one plane conta in ing  the vec tor  ( I ,  O, O, 0). We can define general ized 
hyperbo l i c  funct ions  on this hype rbo la  b y  

ch/3=t, shl/3 = x  , shs/3 = y  , s h 3 / 3 = z  (7.4.1)  

where 13 is twice the area b o u n d e d  b y  the hype rbo le  S, the t-axis and the radius 
vector  o f  the po in t  (t,  x ,  y ,  z). 
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Using the hypercomplex numbers 

H = m + F//4 +sH 5 +//-'/6 

u *  = m - r u 4  - s u s  - t H  6 (7.4.2) 

l u 12 = u u *  

where u4, Us and u 6 satisfy the multiplication law of  Table 2, the rationalized 
functions (7.4.1) can be written 

1 [  u 2K u*2~ / 
chK/3 = 2 [ [u  12K + ~ J  

1 
sh I K/3 = '~  

1 
sh2 K~ = 

1 
sh3 K/3 = K- 

Z 

( H2t~ bte2K t 

(7.4.3) 

Since 

bt 2~ 
chg/3 + u4 Shl t¢/3 + Us sh2t¢/3 + u6 sh3K/3 = lu 12~: 

where m,  r, s, t, • can take only integer values. Obviously these generalized 
hyperbolic functions depend on the chosen number (7.4.2); they satisfy the 
functional equations 

ch (K + l)fl = ch Kt3 ch ll3 + sh 1 K/3 shl l/3 + sh2 KI3 sh2//3 + sh3/~13 sh3 lf~ 

sh I (K + l)13 = ch ~13 shl/fl + Shl K/3 ch/fl 

sh2 (K + I)/3 = ch tq3 sh2 l~ + sh2 ~ ch I/3 (7.4.4) 

sh3 (~ + l)/3 = ch K/3 sh3 I/3 + sh3 K/3 ch l/3 

ch 2 tq3 - sh] K/3 - shZ2 K/3 - sh~ t~t3 = 1 

as well as the difference equations 

A 2 c h t ~  +2(1 - chl3)ch (• + 1)/3= 0 "~ 

A 2 ShlK/3 + 2(1 -- ch/3) sht(K + 1)/3 = 0 
/ 

(7.4.5) 
A z sh 2 g/3 + 2(1 -- ch/3) sh2 (K + 1)/3 = O |  

A 2 sh 3 ~:/3 + 2(1 - ch/3) sh 3 (~: + 1)13 = 0 J  
/ 
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we have from (7.4.5) 

A2 U 2K (U -- U*) 2 U 2(K+I) 

]u12 ~ lu12 lul2(~+a )=0  
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8. Other Rationalized Elementary Functions 

8.1. Rational Points of  Quadratic Equations 

The Caytey parametrizafion of the semisimple groups gives a simple method 
to find the integral solutions of quadratic forms. Let Gj~x~x~ be a non- 
degenerate bilinear expression which is left invariant under a semisimple Lie 
group z~' and let A be the general element of the group d expressed in terms 
of Caytey parameters. If we impose on these parameters the condition of 
being integers, from (2.2) it can be seen that each column, say i, of the matrix 
A gives a set of rational points that satisfy the quadratic equation 
Gj~ A ~iA Ki = Gii. 

Take, for instance, the group SO (3) and the Cayley parametrization given 
by (3.1.2). The elements of the last column, 

2ran + 2nq -2mq  + 2np 
A13=m2+n2+p2+q2 ,  A23 rn2+nZ+p2+q2,  

m 2 + n 2 _ p2 _ q2 
(8.1.1) A 3 3 = m  2+n  2 + p 2 + q 2  

with m, n, p, q integers are the rational points of the expression A ~3 + A~3 + 
A~3 = 1. 

If we define 

x = d(2mp + 2nq), y = d ( -2mq  + 2np) 

z=d(m2 + n 2 - p Z - q 2 ) ,  r=d(m2 +n~ +p2 +q 2) (8.1.2) 

from (8.1.1) it follows that (8.1.2) gives the integral solutions of 
2 2 2 2 x +y + z = r ,  a result that was derived first by Carmichael (1915). 

The rational values of trigonometric and hyperbolic functions can also be 
derived with this method using the Cayley parametrization of the groups 
SO(2) and SO(l ,  1) respectively. 

In the case of the Lorentz group, each column in (3.4.2) gives a set of 
rational points ofA]~ +A~u +A~u -A~] u = 1 (~t = 1, 2, 3, 4). From these 
expressions it follows that, if we take the last column 

x = --2mr(m 2 + q2) + 2ms(ran - pq) - 2rot(rap + nq) "~ 

y = -2mr(ran + pq) - 2ms(m z + p2) + 2mt(mq - pn) I 
! 

z= 2mr(mr - n q )  - 2ms(mq + np) - 2mt(m ~ +n 2) ? (8.1.3) 

t =m2(m 2+n z + p z + q z + r  z+s  2+t  z )+(n t+ps+qr )  2 ! 

r = rn 2 (m s + n 2 + p2 + q 2  _ r 2 _ s 2 _ t 2 )  _ (nt + ps + q r ) 2 /  
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with m, n, p, q, r, s, t, integer numbers, we obtain the solutions of the dio- 
phantine equation 

t 2 _ x2 _ y 2  _ Z 2 = r 2 

8.2. Rational Periodic Functions 

Given a rational trigonometric function (7.1.5), is it possible to Fred a 
positive integer I, such that cos (K + l )a  = cosKa and sin (~ + l )a = sin Ka, in 
other words, to have a rational trigonometric function which is periodic with 
period l? 

If we define 

Z 2g 
~(K) = [z }2K = cos Ka + i sin Ka (8.2.1) 

where z = m + ni, m,  n integers, the periodicity condition reads 

~(k + I) = ~(t¢) or z 21 = [Z 121 (8.2.2) 

One finds the following primitive solutions (which cannot be decomposed 
in the product of  other solutions) of  (8.2.2) for 

l = l : ~ ( K ) =  1 ~ 

l = 2: ~2(~:) = (--:1) K (8.2.3) 

l = 4: ~4(K) = i X 

For l 4= 1, 2, 4 there is no solution o f  (8.2.2): 

Proof. The imaginary part of  (8.2.2) reads, for odd 1, 

l ( m 2 - n 2 ) l - 1 2 m n - - ( 1 3 ) ( m 2 - - n 2 ) t - 3 ( 2 m n ) 3 +  . . . +  - (2mn)Z= 0 

We can simplify this expression dividing by 2mn (which eliminates the trivial 
solution m = 0, or n = 0). Dividing again by n 2 q -  1) we obtain 

\ z - 3  m 2 _{4m2~( l -1 ) /2=0(8 .2 .4 )  
l ( n ~ - l ) l - l - - ( 1 3 ) ( n ~ - I  ) 4 - ~ + ' ' ' + ~ - - ~  - ]  

This is a diophantine equation of  the variable m2/n 2. By congruence con- 
siderations (Sierpifiski, 1964b), the solutions, if existing, is a rational number 
whose numerator must be a divisor of / ,  and the denominator must also be a 
divisor of/.  Now l can be decomposed in a product of  prime numbers. It is 
obvious that if (8.2.2) is a solution for given l, it will also be a solution for 
each of  its prime components. Therefore we will find first the solution of  
(8.2.2) for l prime, and then try as possible solutions all the products con- 
structed with these prime numbers. 

For l = 2, we immediately get q~2(t~) in (8.2.3). For l > 2 we have to solve 
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(8.2.4), because any prime l > 2 is odd. By what has been said above the only 
possible solutions of  (8.2.4) with 1 prime, are rn2/n 2 = 1, l, l/l, or 

m 2 = n 2, m 2 = In z, [m 2 = n 2 

The second and third choice are impossible with m, n integers, and the first 
choice does not satisfy the real part of  (8.2.2), for l prime. Finally it can be 
checked that the only possible products constructed with l = 2, satisfying 
(8.2.2) are l = 2 x 2, which correspond to q~4(n) in (8.2.3). 

We can also construct rational periodic functions out of  the generalized 
trigonometric functions (7.3.4). We define 

¢.o 2~: 

~(K)-- Ico 12K, ¢ o = m + n u l + P U 2 + q u  3 (8.2.5) 

where m, n, p,  q are integers and u 1, u >  u3 satisfy the multiplication law of 
Table 2. The periodicity condition reads 

~(K + l )=  ~(K) or oo2t= [ ~  12t (8.2.6) 

for some positive integer L One finds the primitive solutions of  (8.2.6) for 

l = 1: ~ I(K) = 1K 

I = 2: ~ = ( K )  = ( - 1 )  ~ 

- m  + n u  + p u  2 +qua) K 
/ = 3 : ~ a ( K )  = 2m _ , 3m2=n 2 + p z + q z  

[nu 1 + pu= + qu~\~ 1 = 4: ff4(g) = ~___~_* ____~_'*"o)  , r n 2 = n  2 +p2 +q2 (8.2.7) 

l 
\(m+ 3nul'i'~3pu2+ 3qu3]K,_ rn 2 +q2)~ l = 6: ¢'6(K) = "J = 3(n 2 +p2 

From (7.3.4) and (8.2.7) we can deduce the rational trigonometric 
functions which are periodic. For l = 3, 4, 6 it can be seen that there exist 
inf'mite many solutions which satisfy the conditions for m, n, p, q. 

l f  l 4=- 1,2, 3, 4, 6 there are no solutions o f  (8.2.6): 

Proof. From the automorphism between the multiplicative group of 
quaternions and the proper rotation group, (8.2.6) can be expressed in terms 
of matrices (3.1.2), namely A t= 1. If  4~ is the angle of rotation, this is equivalent 
to coslO = 1, sinl$ = 0, or, 

(cos q5 + i sin ~)t = 1 (8.2.8) 

where l is a positive integer, and cos ~ is given by (3.1.4). As before, we only 
try the solutions for l prime. For l = 2 we obtain ~=(K) = ( - 1 )  ~. For l > 2, l 
is odd and the imaginary part of  (8.2.8) reads 
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I(m2-.n2--p2--q2)l-l--(13)(m2--n2--p2-~q2)t-34m2(n2+p2+q2 ) 

+ . . .  + (4m2(n 2 + p2 + q2))(1-1)/2 = 0 (8.2.9) 

By the same argument as before, the solutions of  this diophantine equation 
must be o f  the form 

m2=n2 +p2 +q 2, m2=l(n2 +p2 +q2), Im2=n2 +p2 +q 2 

The first choice does not  satisfy the real part o f  (8.2.8). Substituting the 
second choice in (8.2.9), we get, after simplification, 

l(l 1) '-1 -(13)(1-I)1-341+-"+(4l)q-I)/2=0 (8.2.10) 

I f / =  3, we get ff3(K) of  (8.2.7). I f /4= 3, each term in (8.2.10) can be de- 
composed as a product of  prime numbers. The prime number 1 appears once 
in the first term, but it appears at least twice in the following terms (in the (l) 
second term, 3 is a multiple of / ,  because l is a prime number). Therefore 

the second choice is not possible for congruence considerations. The same 
can be proved for third choice. 

Finally, from l = 2, and l = 3, the only possible combinations which gives 
a solution of  (8.2.8) is l = 2 x 2, and 1 = 2 x 3, i.e. ~4(K) and ~6(K) 
respectively in (8.2.7). 

8.3. Integral Ityperbolie Functions 
A problem simiIar to the one in the last subsection arises with respect to 

the hyperbolic functions. Are there any particular values of  m, r, s, t in (7.4.3) 
that gives integer values for the generalized hyperbolic functions? The question 
is equivalent to asking whether the diophantine equation 

m 2 -- r 2 -- s 2 -- t 2 = 1 (8.3.1) 

has non-trivial solutions. In this case 

f u 1 2 = l ,  u=m+ru4+sus+tu6 (8.3.2) 

and all the generalized hyperbolic functions (7.4.3) give automatically integer 
values. For the case of  hyperbolic functions (7.2.6) (s = t = 0), the only 
solution o f  (8.3.1) is the trivial one, r = 0, m = + 1. In the case o f  generalized 
hyperbolic functions, (8.3. t ) ha s  infinitely many solutions, that can be con- 
structed as follows: given an arbitrary m (m =~ 0), m z - 1 is a non-negative 
integer N, which can be always expressed as the sum of  three squares 

(Sierpiriski, 1964c) 

N=m 2-  t =r2 +s2 + t 2 
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Then the numbers constructed with these values of  m, r, s, t 

u ~ = (In + r u  4 + s u  s + t u 6 )  ~ ( 8 . 3 . 3 )  

and the functions derived from (8.3.3) and (7.4.3) have integer values for all 
K. 

It is interesting to observe that the set of  all numbers u K, K positive or 
negative integer, given by (8.3.3) form a group with respect to the multiplica- 
tion law of  the hypercomplex numbers (4.3). In particular, if 

m = 2vo 2 + 1, r = 2roy 1, s = 2VoV2, t = 2VoV3 

where v ] + v 2 + v 2 - v 2 = 1, then not only [u {2 = 1 but also the vector 
difference between two consecutive u K and u ~+ 1 possesses an integer magni- 
tude. In fact 

UK + 1 _ U ~ = U~(U _ 1) = U ~ ( 2 v  2, 2VoV I, 2VoV2, 2VoV3) 

and 

lu ~ + l - u ~ l  = 2Vo(V ] +v  2 + v ~ - v 2 )  1/2= 2v o 

hence this infinite regular 'polygon'  has integer values for the length of  its side 
and the components of  its vortices. 

9. Semisimple Lie Groups with Rational and Integer Matrix Elements 

In the last paragraphs we have described a method to find the rational 
points of  the trigonometric, hyperbolic and exponential functions. From these, 
it is very easy to construct the rational linear transformations that leave 
invariant some non-degenerate hi-linear form. By rational linear transformations, 
we understand those linear transformations whose coefficients can take only 
rational values. This can be done by two methods: 

(a) Given a semisimple Lie group, we parametrize the defining representa- 
tion using the standard decomposition in terms of  the Euler angles (Murnaghan, 
1962). It is known that all the matrix elements are constructed with the help 
of  trigonometric, hyperbolic or exponential functions. If  we take the rational 
points o f  these functions by the methods described in Section 7, we wi~ obtain 
matrix elements of  the correspondinggroup with rational values. As an example, 
take the Euler decomposition of  the rotation group and substitute for the 
trigonometric functions their rational points given by (7.1.2). We wilt obtain 
the same result as (5.3) if we impose, in the last expression, the condition for 
m, n to be integer. 

(b) The second method consists of  the use of  the Cayley parametrization, 
as was described in Sections 2 and 3, and then impose the condition on the 
parameters to be integers. Since all the matrix elements in Cayley parametriza- 
tion are rational functions, their values will only be rational numbers, for integer 
values of  the Caytey parameters. Methods (a) and (b) will lead to the same 
result, since the corresponding parameters are related to each other, as can 
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be seen in the expressions (5.5) and (5.8) for the proper rotation group and 
proper Lorentz group. 

The rationalization of  the semisimple Lie groups makes possible the 
conservation o f  the rational character of  the components of  a vector. I f  we 
perform a transformation on this vector by some matrix with rational 
elements the transformed vector will also possess rational components. 

Now we want to restrict more the conditions on the matrix elements of  the 
semisimplex groups by requiring them to be not only rational but integer 
numbers. Doing this we obtain another useful property of  linear transforma- 
tions. In the hypothesis of  N-dimensional cubic lattices, in which the 
coordinates take only integer values, any matrix with integer elements will 
transform a vector with integer components into another vector of  the same 
character. We will study one example among the compact groups and another 
one among the non-compact groups. 

(a) The Proper Ro ta t ion  Group. I f  we impose in (3.1.2) all the matrix 
elements to be integers we must have either m 2 - n 2 - p2 + q2 >1 m 2 + n 2 + 
p2 + q2 or m 2 - n 2 - p2 + q2 = 0, and similar conditions for the rest of  the 
diagonal elements. The first choice gives n = p = q = 0, which corresponds to 
the unit matrix. The second choice gives m 2 = n 2 = p2 = q 2  which corresponds 
to the rotations 

0 , 0 (9.1) 
0 1 

and similar matrices with two arbitrary minus signs. The cubic lattice is left 
invariant under these rotations. 

If  we consider particular sublattice of  the whole Euclidean lattice like the 
set of  all points with coordinates d(x ,  y ,  z) ,  d,  x ,  y ,  z integers, the rotation 
matrices for which m 2 + n 2 +p2 + q2 = d will conserve the integral character 
of  the points in this sublattice. Also the set of  all points in the plane 

z~)=lz2*lzl zo'-~ (K =0, l, 2 , . . . / )  

with z = m + in , j ,  K, l, m,  n integers, is also left invariant under a rotation of  
angle ~b = sin q~ = 2 m n / ( m  2 + nZ). 

(b) The Proper Lorentz  Group. A pure Lorentz transformation with 
m 2 - -  r 2 - s 2 - -  t 2 = 1 will be of  the form 

B ( m , r , s , t )  = 

i 
m + r 2 _ $ 2  _ t 2 2rs 2rt - -2mr -] 

2rs m 2 -- r 2 + s 2 -- t 2 2st --2ms 

1 2rt 2st m 2 _ r 2 _ s 2 + t 2 - 2 m t  
- 2 m r  - 2 m s  - 2 m r  m 2  + r 2  + s2  + t2  

(9.2) 
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where all matrix elements are integers. The solution of m 2 - r 2 - s 2 - t 2 = 1 
can be obtained with the method explained in Subsection 8.3. 

For the proper Lorentz group we can use the decomposition described in 
Section 5. The matrices A (m, n, p, q)  of  the rotation group can only have 
integer elements if they are of  the form (9.1) or some of the variations 
explained afterwards. Therefore the only matrix of  the proper Lorentz group 
with integer elements will be 

A(ml ,n l ,  Pl ,q l  ) B(m2, r2, s2, t2) A(ma, na, pa, q3 ) (9.2') 
2 _  2 =p~  =q~. w i t h m 2 = n  2 = p ]  =q2, m 2 - r 2 -  s ~ -  t 2= 1 , m s - n 3  

10. Simple Applications to Relativistic Mechanics in a Discrete 
Four-Dimensional Space 

We have now some mathematical tools to work out the description of 
physical laws in a discrete space-time world. Although the mathematical 
difficulties o f  this goal seem to be very great, because of  the use of  numerical 
analysis and difference equations, we will try some simple examples. 

According to our first postulate (see Section 6~ given a system of reference 
S, in a Minkowski space, the space-time variables (x, t) can take only integer values. 
We ca11 this space (3 + 1)-dimensional cubic lattice. Every function of  these 
variables f (x ,  t) will allow only integer values of  its arguments. Therefore, the 
infinitesimal increments (dx, dt) should be changed by discrete intervals 
(Ax, At) with integer values. We have: 

(a) Trajectory: x = x(t)  [ lO.la] 

&x 
(b) Velocity: u = -  [10.1b] 

At 

{ U2~ I/2 1 (e2 (At)2 (AX)2)l/2 [ 10.1C] (c) Proper time: A t =  ~1 -- ~ - )  A t =  c - 

moc Ax 
(d) Linear momentum:  p = (C2(At)2 __ (Ax)2)I /2  [lO.Id] 

mo c3 At 
(e) Energy: E = (c2(At)2 _ (Ax)2)l/2 [10.1e] 

According to our second postulate (Section 6) all functions involving the 
space-time variables must be rational, in the sense that their values must be 
rational numbers. For this reason, the expression (c 2 (At) 2 -- (Ax)2)  1/2 which 
appears in (c), (d), (e) must be an integer, and this is true if the quantities 
cat, Ax simultaneously take some of  the values for (t, x ,y ,  z) given in 
formula (8.1.3). 

The rest mass m o in (10Ad) and (10.1e) is independent of  the space-time 
variables in the special relativity. The Lorentz invariant (E2/c 2) - p2 = m2c 2 
does not  impose any constraint in too, because it is a common factor in both  
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sides of  this equation. However, its values should take integer values, with 
respect to some fundamental mass similarly to the space-time variables. This 
assumption, strictly speaking, is not contained in assumption (2) of  Section 6, 
although is consistent with it.? 

With these restrictions, the equation of motion of  a particle in the system 
S is given by 

Ap = F, ~ = F . u  (10.2) 
At At 

where p and u are defined above and F is the force which is the cause of the 
change of the momentum.  For a free particle, F = 0, (10.2) gives Ax/At = 
const., but  nov,, Ax and At are constrained by the condition that  
(C2(At) 2 -- (ZXX)2) 1/2 should be integer. 

Given a four vector x whose components are (x, ct) in an inertial system S, 
the same vector viewed from another inertial system S' ,  will have components 
(x', ct') which are related to the old ones by x '  = Lx, where L is a proper 
Lorentz transformation. It is easy to prove that  the finite increments 
(Ax, cat) t ransform as a four vector, and so its ' length' ( c 2 ( A t )  2 - -  ( A X ) 2 )  1 /2  

is a Lorentz invariant. This shows immediately that the proper time in (10. ic)  
is a Lorentz invariant and the four-momentum (p, E/c 2) transforms as the 
four vector (Ax, cat). Besides that, if we impose the condition that 
(c2(At) 2 - (Ax)2) 1/2 be an integer, and that the Cayley parameters of  the 
Lorentz transformation (3.4.2) take integer values, the rational character of  
the four-momentum will be preserved in any inertial system. 

Further restriction will be necessary in order to preserve the integer values 
of the space-time variables. These restrictions can be satisfied if the Lorentz 
transformations are one of the matrices (9.2) or (9.2'). It  means that the 
velocity of  the system S '  with respect to the system S, given by (3.4.3), is 
restricted by the condition m 2 - -  r 2 - -  s 2 - -  t 2 = 1. 

Consider now the following examples in relativistic electrodynamics. The 
force on an electrically charged particle of  charge e moving in a given electro- 
magnetic field with velocity u relative to an inertial system S is given by 
(Moller, 1952a) 

which can be substituted in (10.2) to obtain the law of motion.  The magnetic 
field due to a point charge moving with uniform velocity u = 2~x/At is 
(Moiler, 1952b) 

e Ax x r  
4~rH - l r 13 (c 2 ( A t )  2 - -  ( A x ) 2 )  1 /2  (10.4) 

+ We are grateful to Professor Roman for this remark. 
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where r is the vector joining the point charge and the point where H is 
measured. 'In order to have a rational expression H, ( r ]+  r~ + rZ3) ~/2 and 
(c 2 (At) z - (Ax)2) 1/2 should be an integer, which is obtained with the help 
of (8.1.2) and (8.1.3), and at the same time that e should be measured in 
natural units (electron charge = 1), and H should be measured in a system in 
which 4zr does not appear in (10.4). 

We assume that Maxwell's equation in an inertial system where the 
coordinates of a point event are integers should be written (Moller, t952c) 

AxHx AyHy+AzHz 
- - +  =0  

Ax Ay Az 

AyEz AzEy 1 AtHx_ 
÷ O, 

Ay Az  c At 

AxE x + AyEy + AzE z 
Ax  Ay Az  

- - = p  

AyHz AzHy 1 AtEx_  1 
Ay Az  c At c 

PUx, 

etc. 1 

etc . )  

(10.5a) 

(10.5b) 

where H, E, p and u are functions o f x , y ,  z, t. (p is the charge density and u 
the velocity with which the charges move in the inertial system S.) 

We solve (10.5) in the particular case of a plane wave moving in the direction 
of the x-axis in vacuum (p = 0). Then the fields are functions of x, t only. By 
similar arguments to the continuous case (MNler, 1952d), and taking for 
simplicity Ax = At = 1, one can show that the functions Hy, Hz, Ey, Ez 
satisfy the wave equation 

A Zxx(p(x, t) = c2 A 2tt O(x, t) (10.6) 

A solution of this equation will be the exponential function (or each of its 
components) 

~(t + x) = (10.7) 

which represents a plane wave going in the direction of the negative x-axis. 
(We take x, t in natural units, c = 1.) 

In fact, from (7.3.7') we have 

from which (10.7) follows. 
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The analog of (10.7) in the continuous case is the exponential function 
(or trigonometric functions) 

e i2~r(t+x),  e i2n = 1 

Since this is a periodic function, we choose (10.7) to be one of the rational 
periodic functions given by (8.2.3) and (8.2.7), with period l, namely 

/ c o 2 ~  (t+x) {co 2 ~' 
Ct(t +x)= [ico l= ] , ~,lco I:] = t (10.8) 

Similar arguments can be made for the plane waves in the direction of the 
positive x-axis, ~(t - x), although we should work with the backwards 
difference operator. 

From this simple example we see that assumption (3) of Section 6 is 
fulfilled, since the solution of the continuous case coincide in the rational 
points with the solution of the discrete case. 

The period T of the solutions q~t(t +x)mus t  be a multiple of/ ,  T = f l ,  
/" = 1, 2 . . . . .  and the same for the wavelength X =/7. (In the particular case of 
plane wave (10.8) /= 1.) As in the continuous case, we can define an angular 
frequency f a n d  a wave number t~, as 

l 1 l 1 

and so our wave functions become 

{~:~(i/j)(t+x) { ~2 t r 
+x)= t-d C) ' 1V2¢/= 1 (10.9) 

In this case only those values of t or x, for which t / j  or x/]  are integer, have 
physical meaning. 

If  the plane wave is moving perpendicular to a different direction than to 
the x-axis the lattice structure requires that 

T = f ir  and X = f ir  

where r = I r I is a particular solution of the diophantine equation r 2 = r] + r~ + r~ 
and r ( r i r 2 r 3 )  are the components of a vector r perpendicular to the plane 
wave. Calling 

l 1 l r l r  
tC o = ~ - j r  , K X r j r  r 

the wave functions (10.9)become 

{ ~z  ~kot+k.x 
~/(X't)= ~l--~J 



CAYLEY PARAMETRIZATION OF SEMISIMPLE LIE GROUPS 245 

The main result of these particular solutions of  the wave equations is that 
the period as well as the wavelength can take only discrete values or, more 
exactly, integer multiple of some basic length. 

11. Concluding Remarks 

The last section, devoted to physical applications, raises some questions 
about the viability of the assumptions of Section 6 (remember the strong 
conditions on the rational periodic functions and the rotation matrices with 
integer elements). A way of avoiding these restrictions could be to relax 
assumption (1), by choosing a different field, as was done by Ahmavaara 
(1965, 1966). 

A necessary task that should be undertaken is the application of the lattice 
model to the area of quantum mechanics and quantum field theory, in a way 
similar to that proposed by Bopp (1967). In our case the rational character 
of the wave functions imposes stronger conditions. Nevertheless the Cayley 
parametrization of the Lorentz group makes possible the invariance of the 
cubic structure of  the lattice without taking the limit, as in Bopp's paper, of 
an infinite number of points. This correspondence between the continuous 
and discrete case is also possible in the case of  the generators of the Lorentz 
group, because the matrices S of the Cayley decomposition of semisimple 
groups satisfy the same commutation relations as the infinitesimal generators, 
as was shown in Section 5. We can still keep the Lie algebra of the operators 
in quantum mechanics associated with finite transformations, in the sense of 
Cayley generators. These operators will be associated with physical observables, 
but nov,' they will have a discrete spectrum, due to the rational character of 
their representation. 

Finally, some philosophical considerations seem to be unavoidable, although 
the geometrical and physical assumptions have been stated without them. I f  the 
space-time lattice is the fundamental reality of the world, it should be con- 
sidered the platform where all the events take place. In other words, the 
world lattice means that there exists an absolute space-time although, from 
the physical point of view, one observer cannot decide whether his system 
of reference is at rest and parallel with respect to the world lattice or is moving 
with respect to it and in an inclined direction with respect to the three basic 
orthogonal axes. 

The assumption of a space-time cubic lattice brings out some other problems 
which can be discussed, at least, in a philosophical sense. If  this lattice is not 
only a mathematical model but an objective reality, is there any reason by 
which the fundamental points of the lattice are arranged in this particular 
cubic structure? I f  the size of this lattice is finite, as was claimed by Bopp 
(1967), are the spatial points of two limiting surfaces, which are in opposite 
sides, connected in such a way that the space can be considered as infinite in 
any direction? Should not the clear distinction between the world lattice and 
the particular entities acting on it require the introduction of a new variable 
responsible for the successive actions produced by the individual entity and 
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expressed through the space-time variables? This idea seems paral!el to the 
introduction of a dynamical variable made by Feynman (1949), and also by 
Aghassi et al. (1970, 1971), and recently by Hurwitz and Piton (1973), who 
claim that this new variable is necessary for the complete description of the 
evolution of the physical system. 

These questions and other philosophical reflections should be taken 
seriously and will require a more thorough study. 
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